PRSI

AD-A211°056

UNCLASSIFIED

SCTURPITY CLASSYEICATION OF THIS PAGL (wrer Date fnfered

AN HILE GO

REPORT DOCUMINTATION PAGE /

RLAZ DNSTRLUCTIONS
PrI0EE TOVT TNt FORY

1. REPORY mimci Kk

{2. 6OVT ACCESS’On N>—T3.

RECIPIENT 'S CATA DL Wumsik

4. TIVLE (ancsudiitie;

Az Compiler Valicdation Summary ,R,epoxt:1nter§ -
tional Business Macnines Corporation, BN Development sSyste
for the Ada Language, MVS Ada Comciler, Version -...1,

IBM 4381 (Host & Targetr), 890420W1.10074

5. TYPt OF REPORY & PLRIOD COVERLD
20 Apr. 1989 to 20 Apr. 1990

e. PERFORMING DR, REPORT mumiiA

7. AUTHOR(s)
Wright=Patterson ATB
Dayton, OH, USA

6. CONTRAUT QR GRANT WuUMZiR(s)

9. PERFORMING ORGANIZATION AND ADORESS

Wright-Patterson AFB
Dayton, OH, USA

10. PROGRAM f EWINT, PRZJECT, TASK
ARLA & WOHK UN]T NUMEZiRS

11. CONTRO.LING OFFICE NaMi AND ADDALSS

Ada Joint Progyram Office

United States Department of Defense
"Washington, DC 20301-3081

12. REPORT DaTE

15, BJReccR OF PRoLS

14. MONITORIAG AGENIY NAME & ADDRLSS(/f arfferent trom Controiung Dft«ce)

15. SELU&S .y (LASS (ofthireport)

UNCLASSIFIED
Wright-patterson ATB 185, QEC}ASSITICATION DONASRADING
Dayton, OH, USA chidult /A

16. DISTRIBUTION STATEMINT (of this Report)

Approved for public release; distribution unlimited.

17, DISTRIELTION STETimiNT (of the absiractenterexin5:0cx 20 If o'Heren: irom Report)

UNCLASSIFIED

I8, SUPPLEMINIARY NOTES

15. KEYWIRDS {Continue Onreverse 5:0¢ 1f necessany ano dentify by block numper)

héz Procramming lancuage, Ada Compiler Validation Summary Repcrt, Ada
Cormpiler Valicdation Capebility, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1B15A, Ada Joint Program Office, AJPO

20. ABSTARRLT (Continue On reverse 5:de if necessary and dent:fy by biock numbper)

International Business Machines Corporation, IBM Develo
MVS Ada Compiler, Versionm 2.1.1, Wright-Patterson AFB
2.7 (Host & Target), ACVC 1.10.

pment System for the Ada Language,
» IBM 4381 under MVS/XA, Release

DD tLwm
1 JAN 73

1473 tDi1110% OF 3 MOV B5 1S OBSOLETE

S/% 0102-LF-014-8601

UNCLASS.FIED

SELURITY CLASSITICAYION OF THIS PALL (wWhenDats Entered)

AVF Control Number: AVF-VSR-261.0789
89-01-26-TEL

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890420W1.10074
International Business Machines Corporation
IBM Development System for the Ada Language
MVS Ada Compiler, Version 2.1.1
IBM 4381

Completion of On-Site Testing:
20 April 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Vright-Patterson AFB OH 45433-€503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Vashington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: IBM Development System for the Ada Language,
MVS Ada Compiler, Version 2.1.1

Certificate Number: 890420VW1.10074

Host: IBM 4381 under
MVS/XA, Release 2.7

Target: IBM 4381 under
MVS/XA, Release 2.7

Testing Completed 20 April 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Vs ")7
ol A”~ /44;221-—
Ada Validation Facility
Steve P. Vilson
Technical Director
ASD/SCEL
Vright-Patterson AFB OH 45433-6503

b Ly

Ada’Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

2,4/4 M@ﬂz% vechs
Ada Joint Program Office i;lx’

Dr. John Solomond
Director

Department of Defense
Vashington DC 20301

——

|

Ada Compiler Validation Summary Report:
Compiler Name: IBM Development System for the Ada Language,
. MVS Ada Compiler, Version 2.1.1

Certificate Number: 890420W1.10074
Host: IBM 4381 under

MVS/XA, Release 2.7
Target: IBM 4381 under

MVS/XA, Release 2.7

Testing Completed 20 April 1989 Using ACVC 1.10

This report has been reviewed and is approved.

7 .
Ada Validation Fac1;ity

Steve P. Wilson

Technical Director

ASD/SCEL

Vright-Patterson AFB OH 45433-6503

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analffses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director

Department of Defense
Vashington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT .
1.2 USE OF THIS VALIDATION SUMMARY REPORT .

1.3 REFERENCES. . . . o e e e . e e e
1.4 DEFINITION OF TERMS C e e e e e e s e e e
1.5 ACVC TEST CLASSES . . . o e e

CHAPTER CONFIGURATION INFORMATION

CONFIGURATION TESTED. « « ¢« ¢ « o o &
IMPLEMENTATION CHARACTERISTICS.

L]
N

CHAPTER TEST INFORMATION

TEST RESULTS. . . « « « « « . . .
SUMMARY OF TEST RESULTS BY CLASS. .
SUMMARY OF TEST RESULTS BY CHAPTER.

VITHDRAWN TESTS . . + ¢ ¢« « ¢ o «
INAPPLICABLE TESTS. . . . « « .« .
TEST, PROCESSING, AND EVALUATION MODIF
ADDITIONAL TESTING INFORMATION. . .
1 Prevalidation
2 Test Method ¢« ¢ ¢« ¢« ¢« ¢« « « .
3 Test Site « & v ¢ ¢ v v v v v o e e e e e

SNSNNSNOIUBT SN
Pre o o o .

FICAT

. o H. « s o s
. e Ht e s s o
o o 4o o o o o
(=]
AT S)

WWWwWwwWwwwilow W [S ~N

APPENDIX A DECLARATION OF CONFORMANCE
APPENDIX B APPENDIX F OF TBE Ada STANDARD
APPENDIX C TEST PARAMETERS

APPENDIX D VITHDRAWN TESTS

| R R L
ORI N -

WWwklWwwwwww

CHAPTER 1

INTRODUCTION

S /\

T =
This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of _testing this compiler using the Ada Compiler
Validation Capability , (ACVC)i» An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard. .

— K
—— — w

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ade Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences betwveen compilers result from the characteristics or
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

———

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. -The purpose of validating is to ensure conformity
cf the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowved
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the¢ AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 20 April 1989 at San Diego CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S5.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate anc complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

QUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Vashington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCEL
Vright-Patterson AFB OB 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February and 1S0 83‘5‘-%&7.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers’ Guide, SofTech,

Inc., December 1986.

4. Ada Compiler Validation Capability User’s Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard
Applicant
AVF

AVO

Compiler

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AV0 provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.
Inapplicable An ACVC test that uses features of the 1language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Target The computer for vhich a compiler generates cod..
Test A program that checks a compiler’s conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Vithdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity (v the Ada Standard 1is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation 1listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is seil-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result vhen it is executed.

Class D tests check the compilatiorn and execution capacities of a compilier.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Bach Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
Hovever, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
wvould circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation 1is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is vithdravn from the
ACVC and, therefore, is not used in testing a compiler. The tests
wvithdrawvn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:

Compiler: IBM Development System for the Ada Language,

MVS Ada Compiler, Version 2.1.1

ACVC Version: 1.10

Certificate Number: 890420W1.10074

Host Computer:

Machine: IBM 4381

Operating System: MVS/XA
Release 2.7

Memory Size: 32 Megabytes

Target Computer:
Machine: IBM 4381

Operating System: MVS/XA
Release 2.7

Memory Size: 32 Megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. Hovever, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The <compiler <correctly processes tests containing loop
statements nested to 65 levels. (See tests D5S5A03A..H (8
tests).)

(3) The <compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 10
levels. (See tests D64005SE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
SHORT_ INTEGER and LONG_FLOAT in package STANDARD. (See tests
B8600IT..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) Some of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component’s subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses no extra bits for extra range. (See test C35903A.)

2-2

e.

CONFIGURATION INFORMATION

(4) Sometimes NUMERIC ERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) NUMERIC_ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflovw is not gradual. (See tests C45524A..Z.)

Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to.integer is round away from
zero. (See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round away
from zero. (See tests C46012A..2Z2.)

(3) The method used for rounding to integer in static universal
real expressions is round awvay from zero. (See test C4AO014A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a ’LENGTH that exceeds
STANDARD . INTEGER’ LAST and/or SYSTEM.MAX INT.

For this impleaentation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises NUMERIC ERROR sometimes.
(See test C36003A.) .

(2) NUMERIC ERROR is raised when a null array type with
INTEGER' LAST + 2 components is declared. (See test C36202A.)

(3) NUMERIC ERROR is raised when a null array type with
SYSTEK.MAX INT + 2 components is declared. (See test
C36202B.)

(4) A packed BOOLEAN array having a ‘LENGTH exceeding INTEGER’LAST

raises NUMERIC ERROR when the array type is declared. (See
test C52103X.)

2-3

(3

(6)

)

(8)

CONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than
INTEGER' LAST components raises NUMERIC_ERROR when the array
type is declared. (See test C352104Y.)

A null array with one dimension of length greater than
INTEGER’LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. Howvever, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
vhen checking whether the expression’s subtype is compatible
wvith the target’s subtype. (See test C52013A.)

In assigning tvo-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR : s
raised when checking wvhether the expression’s subtype is
compatible with the target’s subtype. (See test C52013A.)

f. Discriminated types.

(1)

In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
vhen checking whether the expression’s subtype is compatible
vith the target’s subtype. (See test C52013A.)

g. Aggregates.

(1

(2)

(3)

In the evaluation of a multi-dimensional aggregate, index
subtype checks are made as choices are evaluated. (See tests
C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

CONSTRAINT ERROR is raised after all choices are evaluated
vhen a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1)

The pragma INLINE is not supported for functions or
procedures. (See tests LA3004A. .B, EA3004C..D, and
CA3004E..F.)

2-4

CONFIGURATION INFORMATION

i. Generics

(1)

(2)

(3)

(4)

(3

Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CA1l012A.)

Generic non-library subprogram bodies cannot be compiled in
separate compilations from their stubs. (See test CA2009F.)

Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

Generic non-library package bodies as subunits cannot be
compiled in separate compilations. (See test CA2009C.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011lA.)

Input and output

(1)

(2)

(3)

(4)

(3)

(6)

(7)

(8)

(9)

The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types or record types with discriminants
wvithout defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT IO cannot be instantiated with
unconstrained array types or record types with discriminants
vithout defaults. (See tests AE2101E, EE2401D, and EE2401G.)

Modes IN FILE and OUT FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Modes IN FILE, OUT_FILE, and INOUT FILE are supported for
DIRECT I0. (See tests CE2102F, CE2102I..J, CE2102R, CE2102T,
and CEZ102V.)

Modes IN FILE and OUT_FILE are supported for text files. (See
tests CE3102E and CE3102I..K.)

RESET and DELETE operations are supported for SEQUENTIAL_IO.
(See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

Overwvriting to a sequential file does not truncate the file.
(See test CE2208B.)

2-5

(10)

(11)

(12)

(13)

(14)

(15)

CONFIGURATION INFORMATION

Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

Temporary text files are given names and deleted when closed.
(See test CE3112A.)

More than one internal file can be associated with each
external file for sequential files when reading only. (See
tests CE2107A..E, CE2102L, CE2110B, and CE2111D.)

More than one internal file can be associated with each
external file for direct files when reading only. (See tests
CE2107F..H (3 tests), CE2110D, and CE2111H.)

More than one internal file can be associated with each

external file for text files when reading only. (See tests
CE3111A..E, CE3114B, and CE3115A.)

2-6

CHAPTER 3
TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler wvas
tested, 43 tests had been withdrawn because of test errors. The AVF
determined that 318 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for 6 tests vere required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 127 1131 2016 16 22 44 3356
Inapplicable 2 7 300 1 6 2 318
Vithdrawn 1 2 34 0 6 0 43
TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 573 544 244 171 99 160 333 129 36 252 341 276 3356
Inappl 14 76 13 4 1 0O 6 O 8 O O 28 45 318
Vdrn 1 1 0 0 0 O0 0 1 0 0 1 35 4 43
TOTAL 213 650 680 248 172 99 166 334 137 36 252 404 325 3717

3.4 VITHDRAWN TESTS

The folloving 43 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

E28005C A39005G B97102E BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A

CD2A76B CD2A76C CD2A76D CD2481G CD2A8B3G CD2AB4M
CD2AB4N CD2B15C ‘CD2D11B CD50078 CD50110 ED7004B
ED7005C ED7005D ED7006C ED7006D CD7105A CD7203B
CD7204B - (CD7205C CD7205D CE21071 CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 318 tests were inapplicable for the reasons indicated:

a. The folloving 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113L..Y C35705L..Y C35706L..Y C35707L..Y
C35708L..Y C35802L..2 C45241L..Y C45321L..Y

C45421L. .Y C45521L..2 C45524L..2 C45621L..2
C45641L. .Y C46012L..2
3-2

TEST INFORMATION

C35508I, (€35508J, C35508M, and C35508N are not applicable because they
include enumeration representation clauses for BOOLEAN types in which
the representation values are other than (FALSE => O, TRUE => 1).
Under the terms of AI-00325, this implementation is not required to
support such representation clauses.

. C35702A and B86001T are not applicable because this implementation

supports no predefined type SHORT_ FLOAT.

The following 16 tests are not applicable because this implementation
does not support a predefined type LONG_INTEGER:

C45231C C45304C C45502C C45503C C45504C

C45504F C45611C C43613C C45614C C45631C -
C45632C B52004D C55B07A B55B09C B86001W
CD7101F

C45231D, B86001X, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a name
other than INTEGER, LONG_INTEGER, or SHORT_ INTEGER.

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 47.

CS2008B is not applicable because this implementation does not support
a record type with four discriminants of type integer having default
values. The size of this object exceeds the maximum object size of
this implementation and NUMERIC ERROR is raised. '

D64005G is not applicable because this implementation does not support
nesting 17 levels of recursive procedu.e calls.

C86001F is not applicable because, for this implementation, the package
TEXT_I0 is dependent upon package SYSTEM. These tests recompile
package SYSTEM, making package TEXT I0, and hence package REPORT,
obsolete.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

CA2009C is not applicable because this implementation does not permit
compilation of generic non-library package bodies as subunits in
separate files from their stubs.

CA2009F is not applicable because this implementztion does not permit
compilation of generic non-library subprogram bodies as subunits in
separate files from their stubs.

. LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not

3-3

aa.

ab.

ac.

TEST INFORMATION

applicable because this implementation does not support pragma INLINE.

. CD1009C, <CD2A4l4..B 2 tests), CD2A41E, and CDZA42A..J (10 tests) are

not applicable because this implementation does not support size
clauses for floating point types.

CD2A611 and CD2A61J are not applicable because this implementation does
not support size clauses for array types, vhich imply compression, with
component types of composite or floating point types. This
implementation requires an explicit size clause on the component type.

CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation does not support size clauses for access
types.

AE2101C, EE2201D, and EC2201E use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected by
this compiler.

AE2101B, EE2401D, and EE2401G use instantiations of package DIRECT_IO
wvith unconstrained array types and record types with discriminants
without defaults. These instantiations are rejected by this compiler.

CE2102D is inapplicable because this implementation supports CREATE
wvith IN_FILE mode for SEQUENTIAL_IO.

. CE2102E is inapplicable because this implementation supports CREATE

vith OUT_FILE mode for SEQUENTIAL_IO.

CE2102F is inapplicable because this implementation supports CREATE
with INOUT FILE mode for DIRECT .0.

CE2102I is inapplicable because this implementation supports CREATE
with IN_FILE mode for DIRECT_IO.

. CE2102J) 1is 1inapplicable because this implementation supports CREATE

with OUT_FILE mode for DIRECT IO.

. CE2102N 1is inapplicable because this implementation supports OPEN with

IN FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET with
IN_FILE mode for SEQUENTIAL_IO.

CE2102P 1is inapplicable because this implementation supports OPEN with
OUT_FILE mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESCT with
OUT_FILE mode for SEQUENTIAL IO.

CE2102R is inapplicable because this implementation supports OPEN with
INOUT_FILE mode for DIRECT_IO. ’

3-4

ad.

ae.

af.

ag.

ah.

ai.

aj.

ak.

al.

am.

an.

ao.

ap.

aq.

ar.

TEST INFORMATION

CE2102S is inapplicable because this implementation supports RESET with
INOUT_FILE mode for DIRECT IO.

CE2102T 1is inapplicable because this implementation supports OPEN with
IN FILE mode for DIRECT_IO.

CE2102U is inapplicable because this implementation supports RESET with
IN FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports open with
OUT_FILE mode for DIRECT IO.

CE2102V is inapplicable because this implementation supports RESET with
OUT_FILE mode for DIRECT IO.

CE2107B..E (4 tests), CE2107L, CE2110B, and CE2111D are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for sequential files.
The proper exception is raised when multiple access is attempted.

CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable because
multiple internal files cannot be associated with the same external
file when one or more files is writing for direct files. The proper
exception is raised when multiple access is attempted.

CE2201G is inapplicable because this implementation does not support
CREATE with OUT_FILE mode for SEQUENTIAL IO where the item type is a
record type with variants and discriminants having default values.

CE2401H 1is inapplicable because this implementation does not support
CREATE with INOUT_FILE mode for wunconstrained record with default
discriminants.

CE3102E is inapplicable because this implementation supports CREATE
vith IN FILE mode for text files.

CE3102F 1is inapplicable because this implementation supports RESET for
text files.

CE3102G is inapplicable because this implementation supports deletion
of an external file for text files.

CE3102I 1is inapplicable because this implementation supports CREATE
vith OUT_FILE mode for text files.

CE3102J 1is inapplicable because this implementation supports OPEN with
IN FILE mode for text files.

CE3102K 1is inapplicable because this implementation supports OPEN with
OUT_FILE mode for text files.

3-3

TEST INFORMATION

as. CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for text files. The
proper exception is raised when multiple access is attempted.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases wvhere legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn’t anticipated by the test (such as
raising one exception instead of another).

Modifications were required for 6 tests.

The following tests wvere split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

BA3006A BA3006B BA3007B B£3008A BA3008B BA3013A
3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
IBM Development System for the Ada Language, MVS Ada Compiler was submitted to
the AVF by the applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the IBM Development System for the Ada Language, MVS Ada Compiler
using ACVC Version 1.10 was conducted on-site by a validation team from the AVF.
The configuration in which the testing was performed is described by the
folloving designations of hardware and software components:

Host computer: IBM 4381

Host operating system: MVS/XA, Release 2.7

Target computer: IBM 4381

Target operating system: MVS/XA, Release 2.7

Compiler: IBM Development System for the Ada Language,

MVS Ada Compiler, Version 2.1.1

3-6

TEST INFORMATION

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of imjlementation-specific
values vwvere customized before being written to the magnetic tape. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic tape were ported onto the host computer after first
being loaded to a VM/CMS computer system. No conversion or alteration of

contents occurred.

After the test files were loaded to disk, the full set of tests was compiled,
linked, and all executable tests were run on the IBM 4381. Results vere printed
from the from the host computer.

The compiler vas tested using command scripts provided by International Business
Machines Corporation and reviewed by the validation team. The compiler was
tested using all default option settings except for the following:

OPTION EFFECT

ERROR(LIST) Creates a listing file only when errors are
encountered. The file contains compile-time error
messages interspersed with source code.

LIST(ERRI) Produces a compilation source listing. Semantic
errors, syntax errors, and varnings are
interspersed.

RUN(TEXT) Causes the program to load and execute. It is

assumed that the program display the results on

the console. The output of the entire compilation
and execution is copied to a dataset. This dataset
is examined to determine whether the program was
executed successfully.

Tests were compiled, 1linked, and executed (as appropriate) using a single
computer. Test output, compilation 1listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team vere also archived.

3.7.3 Test Site

Testing was conducted at San Diego CA and was completed on 20 April 1989.

3-7

APPENDIX A
DECLARATION OF CONFORMANCE

International Business Machines Corporation has submitted
the folloving Declaration of Conformance concerning the IBM
Development System for the Ada Language, MVS Ada Compiler.

A-1

DLCLARATION OF CONFORMANCE

Compiler Impiementor: TeieSoft
Ada Valida:ion Facility: ASD/SCEL, Wright-Patterson AFB, OH 45433-6503
Ada Compiier Vaiidazion Capability (ACVC) Version: 1.10

Base Configuration

Base Compiier Name: IBM Development System for the Ada Language,
MVS Ada Compiler, Version 2.1.1
Host Architecture ISA: IBM 4381
Operating System: MVS/XA Release 2.7

Target Architecture ISA: IBM 4381
Operating System: MVS/XA Release 2.7

Implementor’s Declaration

I, the undersigned, representing TeleSoft bave impiemented no deliberate extensions to the Ada
Language Standard ANSI/MIL-STD-1815A in the compiler listed in this deciaration. [deciare
that International Business Machines Corporation is the owner of record of the object code of the
Ada language compiler listec above and, as such, is responsible for maintaining said compiler in
conformance to A}S‘%‘-{IL-STD-]&SA. All certificates and registrations for the Ada language
compilier listed in this declaration shall be made only in the owner’s corporate name.

y !

(I Qg " Da:e:__g/a&l/o;<}

TeieSolt ~

Raymond A. Parra. Director, Contracts & Legal

Owner’s Declaration

I, the undersigned, representing International Busihess Machines Corporation take full

the public disciosure of the final Validation Summary Report. | declare that all of the Ada

language compiiers listed, and their host/target periormance are in compliance with the Ada
Language Standard ANSI/MIL-STD-1815A.

/QM—-L 7‘) EM Date: ..’;/;;'_‘,(/2/_.2«

Internationai Business Maczines Carporation /o
S. W. Poiacek, Mazager of Advanced Language Products

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only alloved implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain ailowed
restrictions on representation clauses. The implementation-dependent
characteristics of the IBM Development System for the Ada Language, MVS Ada
Compiler, Version 2.1.1, as described in this Appendix, are provided by
TeleSoft. Unless specifically noted otherwvise, references in this Appendix
are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not a
part of Appendix F, are:

package STANDARD is

type INTEGER is range -2_147 483 648 .. 2147 4B3_647;
type SHORT INTEGER is range -32_768 .. 32 767;

type FLOAT is digits 6 range -7.23701E+75 .. 7.23701E+75;

type LONG_FLOAT is digits 15 range -7.237205°7733225E+75 ..
7.237. . 13225E+75;

type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.0;

end STANDARD;

B-1

APPENDIX F
OF THE LANGUAGE REFERENCE MANUAL

The Ada language definition allows for certain target dependencies in a controlled manner.
This section, called Appendix F as prescribed in the LRM, describes implementation-dependent
characteristics of the IBM Development System for the Ada Language Release 2.i.1 running
under CMS or MVS.

1. Implementation-Defined Pragmas

PRAGMA INTERFACE(Assembly, <subroutine_name>);
PRAGMA INTERFACE(Non_XA _Assembly, <subroutine_name>);
PRAGMA INTERFACE(Fortran, <subroutine_name>);

PRAGMA SUPPRESS_ALL;

to cause Pragma SUPPRESS to be invoked simultaneously for all the following
condition_names: access_check, discriminant_check, index_check, length check,
division check elaboration check and storage check.

PRAGMA COMMENT (string_literal);
embeds string literal into object code
PRAGMA IMAGES (enumeration_type, <immediate>| <deferred>);

generates a table of images for the enumeration type. deferred causes the table to be
generated only if the enumeration type is used in a compilation unit

PRAGMA LINKNAME (<pragma INTERFACE subprogram name>, <linkname>);

when used in association with pragma INTERFACE, will provide access to anv routine
whose name can be specified by an Ada string literal.

*PRAGMA MVSTASK (priority);
to specify the relative urgency of each MVS task created.
*PRAGMA ALLOCATION DATA

(<access_tvpe>,
<residence_mode>,
<allocation_duration>,
<subpool_number>,
<discrete _user dat.a>);

to associate MVS virtual storage attributes with an Ada access tvpe

Note that PRAGMA MVSTASK and PRAGMA ALLOCATION DATA are effective only when
compiling for an MVS target. Both pragmas require that an MVS runtime be present.

2. Implementation-Defined Attributes

There are no impiementation-defined attributes.

B~2

3. Package SYSTEM
The current specification of package SYSTEM is provided below.

PACKAGE System IS

TYPE Address is Access Integer:
TYPE Name IS (MC68000, ANUYK44, IBM370);

System Name : CONSTANT name := IBM370;

Storage_Unit : CONSTANT := §;
Memory _Size : CONSTANT := 2*%24-1;

- System-Dependent Named Numbers:

Min _Int : CONSTANT :=-(2 ** 31);

Max _Int : CONSTANT := (2 ** 31) - I;

Max Digits : CONSTANT := 15;

Max Mantissa : CONSTANT := 31;

Fine Delta : CONSTANT := 1.0 / (2 ** Max_Mantissa);
Tick : CONSTANT := 1.0 / (10 ** 6);

- Other System-Dependent Declarations

TYPE Subprogram_Value is record
Entry Point_Address : Address:
Display : Address;
end record:
SUBTYPE Priority IS Integer RANGE -255 .. 255:

end SYSTEM;

4. Representation Clauses

This implementation supports address, length, enumeration, and record representation
clauses witi: the following exceptions:

Address clauses are not supported for package, for entry, for tasktype, for
subprograms.

Enumeration clauses are not supported for boolean representation clauses.

The size in bits of representation specified records is rounded up to the next highest multiple
of 8, meaning that the object of a representation specified record with 25 bits will actually occupy
32 bits, and, if the record is used as a component of another representation specified record, 32
bits must be reserved for it.

Non-supported clauses are rejected at compile time.

B-3

5. Implementation-Generated Names

There are no implementation-generated names denoting implementation-dependent
components. Names generated by the compiier shall not interfere with programmer-Gefined

names.

6. Address Clause Expression Interpretation

Expressions that appear in Address clauses are interpreted as virtual memorv addresses.
p Pp p)

7. Unchecked Conversion Restrictions

Unchecked conversions are allowed between types (or subtypes) T1 and T2 provided that:

(1) They have the same static size.

(2) They are not private.

8. Implementation-Dependent Characteristics of the I/O Packages

Sequential 1O, Direct_lO, and Text_lO are supported.
Low _Level 10O is not supported.

Unconstrained array types and unconstrained types with discriminants may not be
instantiated for 1/0.

File names follow the conventions and restrictions of the target operating system.
In Text_lO, the type Field is defined as follows: subtype Field ic integer range 0..1000:

In Text_lO, the type Count is defined as follows: type Count is range
0..2_147_483_646;

B-4

ATTACHMENTF
PARAMETERS USED IN .TST TESTS (MACRO SUBSTITUTIONE)

$MAX IN_LENGTH: 200

$BIG_ID1: STRING(1..200) := (1..199 => ’A’,200 => '1°)

$BIG_ID2: STRING(1..200) := (1..199 => ’A’,200 => '2’)

$BIG_ID3: STRING(1..200) := (1..100 => *A’,101 => '3’,102..200 => 'A’)

$BIG ID4: STRING(1..200) := (1..100 => ’A’,101 => '4’,102..200 => 'A’)

$BIG_STRING1: STRING(1..102) := (1 => "™, 2..101 => ’A’, 102 => ")

$BIG_STRING2: STRING(1..102) := (1 => "™, 2..100 => A’, 101..102 => "1"")

$MAX _STRING LITERAL: STRING(I :200) := (1 => ", 2..199 => 'A’, 200 => ')

$NEG BASED_INT: 164FFFFFFFE#

$BIG_INT LIT: STRING(1..200) := (1..197 => ’0°,198..200 => "298")

$BIG_REAL_LIT: STRING(1..200) := (1..194 => 0",195..200 => "69.0E1"

$MAX_LEN INT_BASED_LITERAL: STRING(1..200) := (1.2 => "2:", 3..197 =>
'0°, 196..200 => "11:")

SMAX_LEN_REAL_BASED_LITERAL: STRING(1..200) := (1.3 => "16:", 4..196 =>
0%, 197..200 => "F.E:") .

SBLANKS: STRING(]..ISO) ;= (1. 180 => ")

$MAX DIGITS: 15

$NAME: NO_SUCH_TYPE_AVAILABLE

$SFLOAT NAME: NO_SUCH_TYPE

SFIXED NAME: NO SUCH TYPE

SINTEGER_FIRST: 2_147 483 648

SINTEGER LAST: 2_147_483 647

SINTEGER LAST PLUS 1:2_147_483 648

SMIN INT: 2 147 482 648

SMAX_INT: 2_147_483_647

SMAX INT PLUS 1: 2_147_483 648

SLESS THAN DURATION: -86 401.0

SGREATER_THAN _DURATION: 86_401.0

SLESS THAN DURATION BASE FIRST:-131_073.0

SGREATER_THAN_DURATION_BASE_LAST: 131_073.0

SCOUNT LAST: 2_147_483_646

SFIELD LAST: 1 000

SILLEGAL EXTERNAL FILE_NAME1L: "BADCHAR* " /%"

SILLEGAL_EXTERNAL FILE_NAME2: "/NONAME,/DIRECTORY"

SACC _SIZE: 32

STASK SIZE: 32

SMIN_TASK_SIZE: 32

SNAME_LIST: MC68000, ANUYK44, IBM370

SDEFAULT SYS_NAME: IBM370

SNEW_SYS NAME: IBM370

SDEFAULT _STOR_UNIT: 8

SNEW_STOR_UNIT: &

SDEFAULT MEM SIZE: 16777215

SNEW_MEM SIZE: 16777215

SLOW PRIORITY: -255

B-5

SHIGH PRIORITY: 255
SMANTISSA DOC: 31
SDELTA_DOC: 2=1.0¢E-31
$TICK: 0.000001

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

SACC_SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access

type.

SBIG_ID1 (1..199=>7A",200=>'1")
An identifier the size of the
maximum input line length which
is identical to SBIG_IDZ except
for the last character.

$BIG_ID2 (1..199=>'A",200=>"'2")
An identifier the size of the
maximum input line length which
is identical to SBIG_ID1 except
for the last character.

$BIG_ID3 (1..100=>'A’,101=>'3',102..200=>"'A")
An identifier the size of the
maximum input line length which
is identical to SBIG_ID4 except
for a character near the middle.

Cc-1

o

TEST PARAMETERS

Name and Meaning Value

SBIG ID4 (1..100=>'A’,101=>"4",102..200=>'A")
An identifier the size of the
maximum input line length which
is identical to SBIG_ID3 except
for a character near the middle.

S$BIG INT LIT (1..197=>0,198..200=>"298")
An integer literal of value 298
wvith enough leading 2zeroes so
that it is the size of the
maximum line length.

$BIG_REAL LIT (1..194=>'0’,195..200=>"690.0")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

SBIG_STRING1 (1=>'"7,2..101=>"'4A’,102a>'"")
A string literal which when
catenated vith BIG_STRING2
yields the image of BIG_IDI.

SBIG_STRING2 (1=>'"7,2..100=>'A’,101=>"1",102=>""")
A string literal which when '
catenated to the end of
BIG_STRINGl yieids the image of
BIG_ID1.
SBLANKS (1..180a>’ ')

A sequence of blanks tventy
characters less than the size
of the maximum line length.

SCOUNT_LAST 2147483645
A universal integer
literal vhose value is

TEXT_10.COUNT’ LAST.

SDEFAULT_MEM_SIZE 16777215
An integer literal whose value
is SYSTEM.MEMORY_SIZE.

SDEFAULT STOR UNIT 8

An integer literal whose value
is SYSTEH.STORAGE_UNIT.

Cc-2

Name and Meaning

TEST PARAMETERS

Value

SDEFAULT SYS NAME
The ~ value of the
SYSTEM.SYSTEM_NAHE.

constant

SDELTA_DOC
A real literal whose value
SYSTEH.FINE_DELTA.

is

SFIELD_LAST
A universal integer
literal vhose value is
TEXT_IO.FIELD’LAST.

SFIXED NAME
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT_NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or

LONG_FLOAT.

SGREATER_THAN DURATION
A universal real 1literal that
lies between DURATION’BASE’'LAST
and DURATION’LAST or any value
in the range of DURATION.

SGREATER THAN_DURATION_BASE LAST
A universal real literal that is
greater than DURATION’BASE’LAST.

SHIGH_PRIORITY
An integer literal wvhose value
is the upper bound of.the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTERNAL FILE NAME1
An external file name which
contains invalid characters.

SILLEGAL_EXTERNAL_FILE_NAHEZ
An external file name which
is too 1long.

SINTEGER_FIRST
A universal
vhose value

integer 1literal

is INTEGER'FIRST.

ibm370

0.000000000931322574615478515625

1000

NO_SUCB_TYPE

NO_SUCE_TYPE

86401.0

131073.0

255

"BADCHAR*" /X"

" /NONAME/DIRECTORY"

~2147483648

c-3

TEST PARAMETERS

Name and Meaning

Value

SINTEGER_LAST
A universal integer literal
vhose value is INTEGER'LAST.

SINTEGER_LAST PLUS_1
A universal ~ integer literal
vhose value is INTEGER'LAST + 1.

SLESS_THAN DURATION
A~ universal real literal that
lies between DURATION'BASE’FIRST
and DURATION’FIRST or any value
in the range of DURATION.

SLESS THAN DURATION BASE FIRST
A universal real literal that is
less than DURATION’BASE’FIRST.

SLOV_PRIORITY
An integer literal whose value
is the lowver bound of the range
for the subtype SYSTEM.PRIORITY.

SHANTISSA_DOC
An integer literal whose value
is SYSTEM.MAX MANTISSA.

SMAX DIGITS
Maximum digits supported for
floating-point types.

SMAX IN LEN
Maximum input line 1length
permitted by the implementation.

$MAX_INT
A universal integer literal
vhose value is SYSTEM.MAX INT.

SMAX INT PLUS 1
A universal integer literal
vhose value is SYSTEM.MAX INT+1.

SMAX_LEN INT BASED_LITERAL
A universal integer based
literal whose value is 2#11%
with enough 1leading zeroes in
the mantissa to be MAX IN LEN
long. -7

2147483647

2147483648

-86401.0

~-131073.0

=255

31

15

200

2147483647

2147483648

(10 '2'>"2:",30 0197.>'0' ,198. 0200->"11:")

C-4

Name and Meaning

TEST PARAMETERS

Value

SMAX_LEN REAL BASED LITERAL
A universal real based literal
vhose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

SMAX _ STRING LITERAL

A string literal of size
MAX_IN_LEN, including the quote
characters.

SMIN_INT
A universal integer literal

vhose value is SYSTEM.MIN INT.

SMIN TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,

LONG_FLOAT, or LONG_INTEGER.
SNAME_LIST

A list of enumeration 1literals

in the type SYSTEM.NAME,

separated by commas.

SNEG_BASED_INT
A based
highest

integer literal whose

order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

SNEV_MEM_SIZE
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
SDEFAULT_MEM_ SI2E. If there is
no other value, then use
SDEFAULT MEM_SIZE.

(1..3=>"16:",4..196=>'0",
197..200=>"F.E:")

(1=>'"",2..199="A',200=>'"")

-2147483648

32

NO_SUCB_TYPE_AVAILABLE

mc68000, anuykés4 , ibm370

16#FFFFFFFE#

16777215

C-5

TEST PARAMETERS

Name and Meaning Value

SNEV STOR UNIT &
An integer literal whose value
is a permitted argument for
pragma STORAGE_UNIT, other tnan
SDEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGI_UNIT.

SNEV_SYS NAME mc68000, anuykéé
A value of the type SYSTEM.NAME,
other than SDEFAULT_SYS_NAME. If
there is only one value of that
type, then use that value.

STASK_SIZE 32
An integer literal whose value
is the number of bits required .

to hold a task object which has
a single entry with one ’IN OUT’
parameter.

STICK 0.000001
A real literal whose value i
SYSTEM.TICK.

APPENDIX D

VITHDRAWN TESTS

Some tests are withdrawvn from the ACVC because they do not conform to the
Ada Standard. The following 43 tests had been withdrawn at the time of
validation testing for the reasons 1indicated. A reference of the form
Al-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE 1in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

¢. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is 1illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

e. CD2A62D: This test wrongly requires that an array object’s size be no
greater than 10 although its subtype’s size was specified to be 40
(line 137).

f. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These
tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

D-1

©

VITHDRAWN TESTS

. CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests

assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

CD2B15C and CD7205C: These tests expect that a ’'STORAGE SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

. CD2D11B: This test gives a SMALL representation clause for a derived

fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

. CD5007B: This test wrongly expects an implicitly declared subprogram

to be at the address that is specified for an unrelated subprogram
(line 303).

ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
vithdravs these tests as being inappropri: te for validation.

. CD7105A: This test requires that successive calls to CALENDAR.CLOCK

change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

CD7203B and CD7204B: These tests use the ’'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

. CD7205D: This test checks an invalid test objective: it treats the

specification of storage to be reserved for a task’s activation as
though it vere like the specification of storage for a collection.

. CE21071I: This test requires that objects of two similar scalar types

be distinguished when read from a file--DATA_ERROR is expected to be
raised by an attempt to read one object as of the other type.
Hovever, it is not clear exactly howv the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

. CE3111C: This test requires certain behavior, when two files are

associated with the same external file, that is not required by the
Ada standard.

. CE3301A: This test contains several calls to END OF LINE and

END_OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARD INPUT (lines 103, 107, 118,

D-2

e = A

WITHDRAWN TESTS

132, and 136).

. CE3411B: This test requires that a text file’s column number be set to

COUNT’LAST in order to check that LAYOUT_ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack c¢f available disk space, anc the tecs:

would thus encumber validation testing.

D-3

